LINKING VERB PATTERN DICTIONARIES OF ENGLISH AND SPANISH

VÍT BAISA
Masaryk University
Brno, Czech Republic

~

SARA MOŽE
University of Wolverhampton
United Kingdom

~

IRENE RENAU
Pontificia Universidad Católica de Valparaíso, Chile
INTRODUCTION

• Verbs are complex
• **AIM**: methodology and tools for the creation of a multilingual corpus-driven lexical resource for verbs using manual and automatic procedures
• CPA-based monolingual pattern dictionaries
 – What are they?
• New multilingual resource – researchers and language professionals?
• Preliminary study:
 I. **Manual linking task** \(\rightarrow\) gold standard dataset
 II. **Automatic linking task** = algorithm; evaluated against the gold standard
CORPUS PATTERN ANALYSIS (CPA)

• Corpus Pattern Analysis (CPA) (Hanks, 2004)
 – an empirical technique in Corpus Ling. and Lexicography
 – map word meaning onto word use through lexical analysis of phraseological patterns, collocations

• Basis: Theory of Norms and Exploitations (TNE) (Hanks, 2013)
 – ‘double helix‘ – patterns of normal usage (‘norms’) vs. their ‘exploitations’

• ‘Pattern‘ – semantically motivated syntagmatic pattern
 – Syntax: SPOCA (Halliday)
 – Semantics: typical nominal slot fillers, represented by Semantic Types (ST) – mnemonic sem. labels
 ▪ CPA shallow ontology (Hanks and Ježek, 2010) – approx. 250 STs; shared by several projects
WHAT IS A PATTERN?

• PDEV: harvest

<table>
<thead>
<tr>
<th>#</th>
<th>%</th>
<th>Pattern & primary impliciture</th>
</tr>
</thead>
</table>
| 1 | 81.11%| *[[Human]]* harvest *[[Plant = Crop]]*
*([Human]) cuts down and gatherings *[[Plant = Crop]]*
when *[[Plant]]* is ready for use |
| 2 | 5.00% | *[[Human]]* harvest *[[Location]]*
*([Human]) gathers foodstuff from *[[Location]]* |
| 3 | 11.11%| EUPHEMISM *[[Human]]* harvest *[[Fish | Animal]]*
*([Human]) kills *[[Fish | Animal]]* for use as food |
| 4 | 2.78% | BIOCHEMISTRY, JARGON *[[Human]]* harvest *[[Body_Part]]*
*([Human]) removes *[[Body_Part]]* for research or transplanting |
CPA PATTERN DICTIONARIES

• Pattern Dictionary of Italian Verbs (PDIV) – Elisabetta Ježek, Pavia

• **Pattern Dictionary of English Verbs (PDEV)**

 – Prof. Hanks, University of Wolverhampton; over 1,700+ English verbs completed

 – Procedure: corpus samples (250/500/1000 lines) from the BNC corpus (Leech, 1992);

 • Sketch Engine – word sketches (Kilgarrif et al., 2014),

 • CPA Editor (Baisa et al., 2015) and CPA shallow ontology (Ježek and Hanks, 2010)

 • Implicatures; register, domain, idiom/phrasal verb labels; links to FrameNet (Ruppenhofer et al., 2010)

 • Percentages for each pattern

• Pattern Dictionary of Spanish Verbs (PDSV)

 – Verbario: Irene Renau, Pontificia Universidad Católica de Valparaíso

 – 300 high-frequency Spanish verbs (currently only 100 publicly available online)

 – Same methodology (CPA), guidelines, ontology, tools (SkE); but: Spanish Web Corpus
MANUAL LINKING: SP-EN PATTERN PAIRS

• Gold standard:
 – 87 SP verbs with one or more EN equivalents (total: 126 EN verbs)
 – Medium-frequency verbs, up to 15 patterns
 – Manual cross-linguistic links between pattern pairs
 ▪ **semanto-syntactic similarity** = tertium comparationis
 ▪ linking procedure developed
 ▪ dataset used in algorithm evaluation

• Issues – practical, theoretical
 – **Coverage**: PDEV/PDSV are WIP resources; different coverage;
 → **limited overlap!!!**
 – Zero equivalence: cultural, social, cognitive, pragmatic reasons; idioms
INPUT: POTENTIALLY MATCHING EN PATTERN

Does it have the same basic syntactic structure as the SP pattern (i.e. SVO or SV [+no obj])?

YES

Do all semantic types in all obligatory syntactic slots match? E.g.: EN: [[Human]] admire [[Anything]]
SP: [[Human]] admirar [[Anything]]

YES

OUTPUT: PERFECT MATCH

NO

OUTPUT: NO MATCH

NO

Do the two patterns share at least ONE semantic type in the same obligatory syntactic slot? For example:
EN: [[Eventuality 1 | Human | Institution]] occasion [[Eventuality 2]]
SP: [[Eventuality 1]] motivar [[Eventuality 2]]

YES

OUTPUT: PARTIAL MATCH

NO

Are the two semantic types in the same obligatory syntactic position related to each other in terms of inheritance in the CPA ontology (up to two nodes), e.g. [[Eventuality]] (supertype) vs. [[Activity]] and [[Plan]] (subtypes):
EN: [[Eventuality 1 | Human]] spoil [[Eventuality 2]]
SP: [[Eventuality | Human]] estropear [[Activity | Plan]]

YES

OUTPUT: PARTIAL MATCH

NO

OUTPUT: NO MATCH
AUTOMATIC PATTERN LINKING: ALGORITHM

• **Heuristic-based algorithm:** automatic linking suggestions

• **Similarity score**
 – 490 SP patterns and their translations into EN (statistical EN-SP dictionary <-- parallel corpus)
 – S, DO, IO → comparison of STs
 – **Full match:** 1 score pt (*Human = 0.5 pt); matching empty slots (e.g. DO) – 0.5 pts
 – **CPA ontology:** similarity score = 0.5\(^N\)
 ▪ Score calculated based on the distance (N) in the CPA ontology tree
 – Scores summed up, final score assigned to the pair, top ranking EN pattern = most likely candidate

• **Evaluation**
 – 50 SP-EN *verb* pairs
 – Excluded: SP pattern cannot be matched against an EN pattern in the sample
 – Final no. of candidate pattern pairs: 50 → gold standard
 – 40/50 suggested candidate pairs were correct → **80% precision**
CONCLUSION

• Future activities:
 – **Gold standard**: more annotated data;
 – Refine the linking procedure (fine-grained distinctions?; intralingual links)
 – **Algorithm**: train, improve precision;
 – **Software adaptation**: feature for adding cross-linguistic links to the dictionaries/databases.
REFERENCES

USEFUL LINKS

• Pattern Dictionary of English Verbs
 http://pdev.org.uk/

• VERBARIO (Pattern Dictionary of Spanish Verbs)
 http://www.verbario.com/

• PDEV-LEMON
 http://pdev.org.uk/PDEVLEMON.html